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ABSTRACT

Co-simulations of cyber-physical energy systems often
comprise components running at vastly different time
scales, ranging from nano-second communication within
a tightly coupled system to 15 minutes or longer for,
e. g., power-flow calculations. We introduce tiered du-
rations, which allow coupling of such components with-
out requiring the slower ones to be aware of the high-
frequency steps of the faster ones while maintaining
clear semantics for the simulation as a whole, extend-
ing earlier concepts of super-dense time and same-time
loops. On top of this, simulator groups allow creating
consistent data-flow graphs using tiered durations. Both
tiered durations and simulator groups have been imple-
mented in our co-simulation framework mosaik.

INTRODUCTION

Simulations of Cyber-Physical Energy Systems (CPES)
often deal with vastly different time scales within a sin-
gle simulation. For example, the power grid might be
simulated in 15-minute durations (as that is the fre-
quency of many energy markets), whereas agent-based
models connected to it communicate at sub-second
speed. While it would be possible (and more correct,
even), to simulate the agent’s real communication times,
this is often quite cumbersome without promising more
accurate results. We would, therefore, like to abstract
away the precise timing of these communications while
preserving their logical ordering. The following exam-
ple will serve as motivation and for illustration purposes
throughout the paper:

Example. A fleet of battery cells are connected to a
joint inverter and are controlled by a software controller.
Each of the cells, the controller, the inverter, and the
power grid are represented as separate components in
the simulation. The power grid simulation runs at 15-
minute durations. At the beginning t of each duration,
the battery cells and controller negotiate the use of the
inverter based on the state of the grid in the previous
duration and some internal state of the inverter. This re-
sults in an indeterminate number of steps, which should

Cells

Ctrl

Inv Gridnegotiation

DC
power

inverter
state

AC power

previous grid state

Figure 1: The example scenario

all be considered to be happening at time t but are still
ordered. Once the negotiation is over, the cells relay
their DC power values to the inverter, which then sends
its real and reactive power to the grid. Figure 1 illus-
trates the simulators and their connections.

To support scenarios like this, co-simulation frameworks
often provide super-dense time or same-time loops, al-
lowing the different time scales to be separated.

For example, in version 3.0 the co-simulation frame-
work mosaik was augmented with support for event-
based scheduling and same-time loops (Ofenloch et al.
2022), which resolve this problem for the case of two
simulators negotiating without advancing time. How-
ever, the approach becomes intractable as the number
of negotiating simulators increases, as it subtly depends
on the order in which simulators are started and con-
nected.

Another popular approach is super-dense time where
time is augmented by a second component explicitly or-
dering the simultaneous events (e. g. Eker et al. (2003),
Blochwitz et al. (2011)). We will call this component the
sub-step. However, when applying this approach glob-
ally, assigning an a-priori stepping time to a component
like the power grid simulator in the example is impossi-
ble. After all, it is supposed to run after the negotiation
is over, which takes an indeterminate number of steps,
so the sub-step of the power grid is only known after the
negotiation. At the same time, the power grid simulator
should be able to set its own next step; it should not be
necessary to trigger it from the inverter.

In this paper, we present an extension of the super-
dense time approach, which we call tiered time and
which we have implemented in version 3.3 of mosaik.
The extension is two-fold. First, we allow our times to
have an arbitrary number of components (instead of just
two), and second, we allow different simulators to work



at different time resolutions, i. e., with times having dif-
ferent numbers of components. This allows us to avoid
assigning a sub-step to a component like the power grid
simulator where it is not needed. The main challenge
then lies in how to relate times of simulators running
at different time resolutions, which is resolved by the
introduction of tiered durations.
The organization of this paper is as follows: This

paragraph is followed by a short overview of related
work. In the next section, we briefly sketch the prin-
ciples behind mosaik’s time synchronization. Then, we
introduce tiered times and tiered durations, which are
used to represent the points in time where steps oc-
cur and the durations between those times, and explain
their basic properties. This is followed by an explana-
tion of simulator groups, which provide the interface a
scenario author uses to take advantage of tiered times.
We conclude our work in the last section.

Other related work

Super-dense time has been discussed for some time, ap-
parently first by Maler et al. (1992). Usually, a “stan-
dard” representation of time (i. e. the real numbers or
the integers, depending on whether or not time is consid-
ered discrete) is augmented by a second natural-number
component, ordering events that happen simultaneously
(e. g. Broman et al. (2015).
In Hybrid simulation: it’s about time, Cremona et al.

(2019) discuss the super-dense time in the context of
the FMI standard (Blochwitz et al. 2011), together with
a negotiation mechanism for a shared time resolution
between simulators.
In Toward a Theory of Superdense Time in Simula-

tion Models, Nutaro (2020) gives an axiomatization of
what is required for a “time” in the context of discrete
event systems (e. g. Zeigler et al. (2019)), along with
several examples of systems of super-dense time fulfill-
ing those axioms. The axiomatization presented there
does not allow different simulators to use different time
resolutions, though, and thus cannot be applied to our
tiered durations.

TIME SYNCHRONIZATION IN MOSAIK

We will first briefly explain mosaik’s scheduling algo-
rithm for normal, non-tiered time, in which case step-
ping times are always integers. For a more in-depth
explanation, we refer to mosaik’s documentation1.
mosaik uses a global conservative scheduler that

steps each simulator independently, meaning that two
simulators running simultaneously do not need to agree
on the current time (except when running in real-time
mode, which is beyond the scope of this paper). Or-
dering between the steps of two different simulators is

1https://mosaik.readthedocs.io/en/latest/scheduler.html

purely based on the connections established between
them by the user in their scenario script. For exam-
ple, when an output of simulator A is connected to an
input of simulator B, and both simulators have a step
scheduled at the same time t, mosaik will step simula-
tor A first so that its output is available for simulator
B’s step. This is provided that the connection is not
marked as time-shifted. More generally, if a time shift
of u is specified for that connection, B will be allowed
to step ahead of A, in the sense that its step for time
t+u can be performed as soon as A has passed the time
t, and B will use A’s newest output from that time.
This allows loops between two or more simulators to be
resolved explicitly.

While the time shifts between simulators are static
and known to mosaik, the precise stepping times are
not, as they can be chosen by the simulators during
the simulation and can also depend on data sent be-
tween simulators. To perform its scheduling, mosaik
keeps track of both the already-determined future steps
of each simulator and of each simulator’s progress, which
is its earliest potential future stepping time, based on
the scheduled steps of all simulators and the given time-
shifts. The time of the earliest scheduled step will only
go down as earlier steps are scheduled (until a step is ac-
tually performed), while the progress can only increase
(whenever simulators decide not to produce events that
could have otherwise triggered earlier steps). Once the
time of the earliest scheduled step and the progress are
the same, that step is committed as the next step to
be performed. mosaik then waits until all simulators
that could provide data for this step have progressed
past this point before stepping the simulator with the
collected inputs.

Depending on the simulators’ connections and step-
ping behavior, some might step ahead of others. This
doesn’t affect correctness, provided the simulators do
not communicate “behind mosaik’s back”.

TIERED TIME AND TIERED DURATIONS

As seen in the introduction, integer time steps are of-
ten impractical when integrating communication into
co-simulation scenarios, as communication happens at
a much faster time scale than the rest of the simulation.
Fine-tuning the stepping times of all components to
support this is frequently cumbersome, especially when
communication delays are not the focus of the investi-
gation.

Tiered times are a solution to this. Instead of as-
signing each step a single integer as its time, tuples
(t0, . . . , tl−1) of one or more non-negative integers are
used. Each component of these tuples is called a
tier, and the number l of tiers is called the tiered
times’ length. Tiered times are ordered lexicographi-
cally, which allows any step to be subdivided into in-
finitely many smaller steps by going one tier down. All

https://mosaik.readthedocs.io/en/latest/scheduler.html


tiered times associated to one simulator will have the
same length, which we call the simulator’s (time) reso-
lution. Crucially, however, different simulators possibly
use different time resolutions.
To relate tiered times between simulators, we intro-

duce tiered durations, which represent lengths of time.
They act on tiered times, in the sense that it is possi-
ble to add a tiered duration u to a tiered time t to get
tiered time t+ u. Three basic types of tiered durations
are necessary:

(A) Time shift : Add a non-negative integer to each
component of t to receive a tiered time of the same
length.

(B) Truncation: Discard the last tier of t (if it has
length ≥ 2). This represents the idea that when
a simulator waits for another simulator running at
a higher resolution, all sub-steps at the higher res-
olution should happen “at once”.

(C) Extension: Append a tier with value 0 at the end
of t. This represents the same idea as above, except
that now the higher-resolution simulator waits for
the lower-resolution one.

While scheduling, it is often necessary to add several
of these basic tiered durations to a tiered time one after
the other. It, therefore, turns out to be very useful to be
able to add two tiered durations as well, resulting in a
combined tiered duration that has the same effect. More
formulaically, we want an operation on tiered durations,
also written +, such that for any tiered time t and tiered
durations u, v, we have

(t+ u) + v = t+ (u+ v), (1)

so that it does not matter whether we add the tiered du-
rations to the tiered time one after the other or combine
them first.
However, if u and v are among the basic types (A)

to (C) listed above, the tiered duration u+ v might no
longer be expressible as one of these basic tiered dura-
tions. This forces us to choose a more general definition.
We will also associate a pre-length to each tiered dura-
tion, which is the length of the tiered times and tiered
durations to which it can be added. This serves mostly
as a sanity check, preventing mix-ups between different
tiered durations or the order in which they are added.

Definition. A tiered duration u of pre-length k and
length l (also a (k, l)-tiered duration for short) is an
l-tuple (u0, . . . , ul−1) of non-negative integers together
with a cut-off length co(u), where we require that 1 ≤
co(u) ≤ min{k, l}.
The sub-tuple (u0, . . . , uco(u)−1) is called the addi-

tion part uadd of the tiered duration, the sub-tuple
(uco(u), . . . , ul−1) is the replacement part urepl. We
also write the tiered duration as (uadd | urepl) or
(u0, . . . , uco(u)−1 | uco(u), . . . , ul−1).
We denote by 0k the (k, k)-tiered duration (0, . . . , 0 |)

with k zeros.

Addition of a (k, l)-tiered duration u and an (l,m)-tiered
duration v results in a (k,m)-tiered duration defined by

(u+ v)i = [i < co(v)]ui + vi for 0 ≤ i < m, (2)

co(u+ v) = min{co(u), co(v)}, (3)

where the square brackets in (2) are Iverson brackets,
evaluating to 1 if the condition inside is true, and eval-
uating to 0 otherwise. (This 0 should be considered a
“strong zero”, i. e. despite ui technically being undefined
if i ≥ l, we consider [i < co(v)]ui = 0 in this case, as
i ≥ l ≥ min{l,m} ≥ co(v).)

Adding an (l,m)-tiered duration to a tiered time of
length l works similarly, following equation (2) with u
as the tiered time, v as the tiered duration.

In essence, when adding a tiered duration to a tiered
time or duration, the addition part is added to the cor-
responding tiers of the first summand, while the replace-
ment part replaces the remaining tiers.

Proposition. The addition of tiered durations is asso-
ciative, and the action on tiered times fulfills (1). For
each length l, the tiered duration 0l is a neutral element
when added to (k, l)-tiered durations from the right and
when added to (l, k)-tiered durations from the left.

Proof. Straightforward calculation using (2), (3).

Note. The addition of tiered durations is not commuta-
tive. We apologize for denoting it using +, regardless.

A basic time shifts is represented by (u0, . . . , uk−1 |)
where u0, . . . , uk−1 are the components to be added. A
truncation is given by (0, . . . 0 |) (with as many zeros
as tiers should remain), and an extension is given by
(0, . . . , 0 | 0) (with as many zeros total as the destination
simulator’s time resolution).

During scenario setup, the “shortest” connection be-
tween two simulators will be needed occasionally, which
necessitates comparing tiered durations. Denoting by ≤
the to-be-defined order on tiered durations (and using
the same notation for the lexicographic order on tiered
times), we should expect that for any two tiered times
s and t with s ≤ t and tiered durations u and v with
u ≤ v, it follows that s + u ≤ t + v. This necessarily
means that some tiered durations won’t be comparable.

This effect can already be witnessed when the tiered
time summands are the same. For example, consider
the following addition table:

u v
+ (0, 0 |) (0 | 1)

t0 (0, 0) (0, 0) (0, 1)
t1 (0, 2) (0, 2) (0, 1)

In the row for t0, the result from adding v is bigger,
whereas in the row for t1, the result from adding u is
bigger. This means that the two tiered durations u and
v cannot be ordered, and a partial order will have to do.



To define this order, we introduce a bit of notation:
For a tiered duration u of length l and 0 ≤ i ≤ j ≤ l,
denote by ui:j the tuple (ui, . . . , uj−1). In particular, if
u has length l, u0:l is the tuple consisting of the tiers
of u, but the cut-off has been “forgotten”. We also use
this notation for tiered times.

Definition. Let u and v be two (k, l)-tiered durations
and let c = min{co(u), co(v)}. Then we define u ≤ v if
u0:c < v0:c or if u0:l ≤ v0:l and co(u) ≤ co(v), where the
tuples are compared lexicographically in both cases.

Proposition. Let s, t be tiered times of length k and
let u, v be (k, l)-tiered durations. If s ≤ t and u ≤ v,
then

s+ u ≤ t+ v. (4)

Proof. We will repeatedly use the fact that (4) holds if
s, t, u, and v are tuples; + denotes the usual compo-
nentwise addition; and ≤ is the lexicographic order. We
label this version (4)′. Further, this inequality is strict
if and only if at least one of the inequalities between s
and t or u and v is also strict.
Also, for any tuples x and y of length l and any split-

ting point i, the lexicographic inequality x ≤ y holds if
and only if x0:i < y0:i or both x0:i = y0:i and xi:l ≤ yi:l.
For this proof, we call this the splitting property.
Let c = min{co(u), co(v)} as in the definition. We

have to consider two cases:
Case u0:c < v0:c. We only need to look at the addition

parts, where (s + u)0:c = s0:c + u0:c and (t + v)0:c =
t0:c + v0:c. Hence, (s + u)0:c < (t + v)0:c by (4)′, and
going to the full tiered times s + u and t + v cannot
reverse this.
Case u0:l ≤ v0:l and co(u) ≤ co(v). Then c is co(u)

and we let d = co(v). We consider the pure addition
part 0 : c, the mixed part c : d, and the pure replacement
part d : l in order. We have (s + u)0:c = s0:c + u0:c ≤
t0:c+v0:c = (t+v)0:c by (4)′ and if the inequality is strict,
we are done. Otherwise, we may conclude sc:d ≤ tc:d
and uc:d ≤ vc:d from the splitting property. Further,
(s + u)c:d = uc:d, but (t + v)c:d = tc:d + vc:d. As tc:d
consists of non-negative components by the definition
of tiered times, (s + u)c:d ≤ (t + v)c:d. Again, if the
inequality is strict, we are done, and otherwise, ud:l ≤
vd:l. But since we are now in the replacement part,
ud:l = (s+u)d:l and vd:l = (t+v)d:l, so we are done.

Because the ordering is not total, not every set of (k, l)-
tiered durations has a minimum. However, two tiered
durations with the same cut-off length will always be
comparable, as in that case, the definition reduces to
the lexicographic order, which is total. Therefore, a set
of (k, l)-tiered durations has at most min{k, l} minimal
elements, making storing all minimal elements feasible
whenever a minimum does not exist. In practice, a mini-
mum exists for most simulator pairs.
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Figure 2: The example scenario with added time shifts

Integration into mosaik’s scheduling

The mechanism described in the section Time syn-
chronization in mosaik works essentially unchanged for
tiered times and tiered durations. Each simulator’s
steps now happen at tiered times (of length correspond-
ing to that simulator’s time resolution). The time shifts
on connections between simulators are given by (k, l)-
tiered durations where k is the source simulator’s time
resolution, and l is the destination simulator’s time res-
olution. (Because the involved simulators may have dif-
ferent time resolutions that need to be lined up, even
non-time-shifted connections have tiered durations as-
signed, with all tiers 0 and appropriate cut-off lengths.)

Example. In our example, both the battery cells and the
controller get a time resolution of 3, the inverter gets
a time resolution of 2, and the power grid simulation
runs at time resolution 1. See Figure 2 for the time
shifts. At any main step t, the inverter and the cells
run first and send data to the controller. The inverter
schedules a step for time (t, 1). The controller exchanges
messages with the cells for the negotiation, during which
their tiered times are of the form (t, 0, s). As (t, 0, s) +
(0, 1 |) = (t, 1), which is not past the inverter’s scheduled
step, the inverter will wait. Once the negotiation ends,
the cells’ progress will increase to (t, 1, 0), at which point
the inverter can run again because (t, 1, 0) + (0, 1 |) =
(t, 2) now has passed its scheduled step. It sends data
to the grid and schedules its next step at time (t+1, 0).
This will allow the grid to perform its step at time (t).

SIMULATOR GROUPS

mosaik’s tiered-time system is not exposed to the user
directly. Instead, users create groups in their scenario
script, which can be nested, and start their simulators
within them. At the base level, simulators use tiered
time with one tier. Each group adds one extra tier to
the resolution of simulators contained within.

Each connection between simulators is associated
with a tiered duration. When a connection leaves a
group, a tiered duration of type (B) is added; when a
group is entered by the connection, a tiered duration of
type (C) is added. When the user specifies an (integer)
time shift, this is represented by a tiered duration of
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Figure 3: Example of a simulation setup. Rectangles
denote simulator groups.

type (A) with the given time shift placed in the zeroth
tier. Additionally, the user can specify a weak shift;
this is also represented as a type (A) tiered duration,
but placing the shift in the tier corresponding to the in-
nermost group shared by both simulators. It is an error
to specify a weak shift if the simulators share no group.

Example. Figure 3 shows a setup of six simulators il-
lustrating these rules. The weak connection between B
and C leads to a non-zero entry in the first tier (counting
tiers from zero), while the weak connection from E to F
materializes in the second tier. A weak connection from
C to E would not be allowed because these simulators
do not share a group.
It also illustrates a case where the non-totality of our

order becomes relevant. Namely, simulator C loops to
itself in two ways: via simulator B, with a total duration
of (1, 0 |)+(0, 1 |) = (1, 1 |) and via simulators D and A,
with a total duration of (0 |)+ (1 | 0)+ (0, 2 |) = (1 | 2).
As these are not comparable, both need to be considered
when determining how soon output from C can influence
simulator C’s own input.

API considerations

As mosaik already had a system of weak connections in
version 3.2 and earlier, it was important to design the
new API to avoid existing simulations suddenly produc-
ing different results without notice. This motivated in-
troducing groups and making their use mandatory when
using weakly shifted connections. This way, users with-
out weak connections are completely unaffected, while
users with existing weak connections get an error mes-
sage referring them to the appropriate documentation.
For very simple setups involving just one weakly con-

nected pair of simulators, the error is resolved by simply
placing both simulators in the same group. For more
complicated setups of weak connections, some decisions
need to be made on distributing them into groups, which
depend on the intended stepping and data-flow behav-
ior. In these cases, the old system would call the simu-
lators in an essentially random fashion.

CONCLUSIONS

By introducing tiered durations and simulator groups
into mosaik’s scheduling algorithm, stepping more than
two simulators without advancing the main time has be-
come possible, while these setups have been difficult or
impossible to achieve previously. This paves the way for
simulations integrating components operating at vastly
different time scales.

In a future paper, we plan to give an axiomatization
of tiered times and durations in a similar to the one in
Nutaro (2020).
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