Thermal effects have always been important in determining the performance, cost and reliability of both the device itself as well as for the application in which it is used. For example, packages that are able to sustain high temperatures are expensive, as are heat-sinks and cooling systems. In addition, high operating temperatures tend to cause performance degradation or even malfunctioning of circuits and components, thus reducing the reliability of the end application. For this reason, models that predict the thermal characteristics of semiconductor devices have long been included in the EDA (Electronic Design Automation) software that chip manufacturers use to design their devices. However, these existing design tools are not sufficient in terms of being able to handle the new materials and extremely small structures that will be required in future applications and technologies where heat/power management is of vital importance.
This 3-year project is designed to maintain the strong positions that Europe's semiconductor and electronics equipment companies have achieved in highly competitive application areas such as automotive systems and factory automation where the semiconductor devices are often required to work under harsh conditions with temperatures in excess of 100 degrees Celsius.
The project will draw on the complementary expertise of industrial partners (semiconductor manufacturers and EDA suppliers), research institutions and universities to meet three key goals:
Rosinger, Sven; 007 / 2012
Rosinger, Sven and Metzdorf, Malte and Helms, Domenik and Nebel, Wolfgang; Test Workshop (LATW), 2011 12th Latin American; 03 / 2011
Enrico Costenaro, Domenik Helms, Nematollah Bidokhti, Adrian Evans, Maximilian Glorieux and Dan Alexandrescu; DAC - Design Automation Conference; 06 / 2015
Malte Metzdorf, Domenik Helms, Reef Eilers, Wolfgang Nebel; DATE - Design, Automation, and Test in Europe; 03 / 2015