We are currently experiencing the digital transformation of our economy and society. This fundamental change is accompanied by extensive digitization and networking in all areas, creating a world in which the previous separation between off - and online no longer predominates. The physical world is merging with the digital world.
This presents many new opportunities and possibilities, but also an equal number of challenges and risks.
ICT security in particular can no longer rely solely on established models and solution strategies. The trinity of privacy, integrity, and availability as the fundamental base of IT-Security must be reconsidered and revised to fit the new global cyberworld. In the networked world, previously self-suffi cient systems have suddenly become elements of a global "system of systems". The fusion of heterogeneous application systems increases the number of targets for cyberattacks and their harmful effects. Security gaps in soft- and hardware represent one of the biggest challenges, since they are deeply rooted in these systems’ own development histories. Over and above this, the deep integration of, and high level of interdependency between, ICT and physical systems present new areas for attack, for which innovative defense concepts are hard to find.
The discovery of the ›Meltdown‹ hardware gap, that can be exploited using the ›Spectre‹ attack scenario, illustrated that full protection against cyber-attacks can never be guaranteed. Such gaps in security as these serious processor errors often remain undiscovered for years, during which time they can be exploited by attackers. A further problematic issue is soft- and hardware components that use outdated security solutions that, in addition to this, were often never intended to be used within a system of systems. These solutions often lack basic options for retrospective back-ups, such as patch management. Security experts have thus been giving warnings about inadequate quality control in the Internet of Things for many years now. The fight for market share often comes at the cost of product security, in turn often first made possible by the lack of quality control standards.
The Cyber-Resilient Architectures and Security competence cluster is addressing these challenges, answering them with a four-point model that makes systems robust, stable, and adjustable when faced with flexible, cooperative, intelligently acting attackers:
Michael Brand: Trust models and anomaly detection
Björn Siemers: Incidence response and attack technologies
E-Mail: sebastian.lehnhoff(at)offis.de, Phone: +49 441 9722-240, Room: O50
E-Mail: jorge.marx-gomez(at)offis.de, Phone: +49 441 798 - 4470, Room: A4-3-315
Azamat, M., Werth, O. & Uslar, M.; Americas Conference on Information Systems (AMCIS 2024); June / 2024
Azamat, M. et al.; Secure Cyber Cluster Whitepaper; July / 2024
Fraune, Bastian and Woltjen, Torben and Siemers, Björn and Sethmann, Richard; 2023 IEEE Belgrade PowerTech; 2023
Narayan, Anand and Brand, Michael and Lehnhoff, Sebastian; Energy Informatics; October / 2023
Haack, J and Narayan, A and Patil, AD and Klaes, M and Braun, M and Lehnhoff, S and de Meer, H and Rehtanz, C; Electric Power Systems Research; July / 2022
Björn Siemers, Lars Fischer, Sebastian Lehnhoff; 2022 IEEE 7th International Energy Conference (ENERGYCON); 06 / 2022
Michael Brand, Felipe Castro, Batoul Hage Hassan, Carsten Krüger, Torben Logemann, Björn Siemers, Dennis Weller, Torge Wolff, Sebastian Lehnhoff; Abstracts of the 10th DACH+ Conference on Energy Informatics; 09 / 2021
Maedeh Mahzarnia ; Mohsen Parsa Moghaddam ; Payam Teimourzadeh Baboli ; Pierluigi Siano; IEEE Systems Journal; 2020
Attarha, Shadi and Narayan, Anand and Hage Hassan, Batoul and Krüger, Carsten and Castro, Felipe and Babazadeh, Davood and Lehnhoff, Sebastian; Energies; May / 2020
Michael Brand, Shoaib Ansari, Felipe Castro, Ranim Chakra, Batoul Hage Hassan, Carsten Krüger, Davood Babazadeh, Sebastian Lehnhoff; PowerTech; 2019